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Two Effective Thermal Conductivity Models for Porous
Media with Hollow Spherical Agglomerates1

Fan Yu,2 Gaosheng Wei,2 Xinxin Zhang,2,3 and Kui Chen2

Based on the microstructure features of xonotlite-type micro-pore calcium sil-
icate, two unit cell models, the point-contact hollow spherical model and the
surface-contact hollow cubic model, are developed. As one of several excel-
lent insulation materials, xonotlite is represented as porous media with hollow
spherical agglomerates. By one-dimensional heat conduction analysis using
the unit cell, the effective thermal conductivity of xonotlite is determined.
The results show that both of the models are in agreement with experimental
data. The algebraic expressions based on the unit cell models can be used to
calculate the effective thermal conductivity of porous media that have similar
structure features as xonotlite.
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1. INTRODUCTION

Some high efficiency composite insulation materials based on the theory of
self-assembly for nanostructured materials have appeared in recent years,
such as adiabatic tiles using fire-retardant fibers compounded with silica
aerogel, which have been used in an insulation layer on space shuttles
[1]. Compared with fire-retardant fiber, xonotlite provides better insulating
performance, which has been emphasized in recent years in several studies
[2–4]. Silica aerogel has very low thermal conductivity but is brittle. It is
expected to provide even better insulation performance by compounding
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xonotlite with silica aerogel. Due to the nano-pores in this composite
material, its thermal conductivity can be very low (lower than non-con-
vective air) [5]. The extreme adiabatic capability results in these materials
having very high application potential in the heat protection of space shut-
tles, nuke reactors, and even ordinary steam pipes. The effective thermal
conductivity is the key parameter for evaluating the performance of these
insulation materials. The development of an effective thermal conductiv-
ity model based on the material’s microstructure is extremely important for
the thermal design and analysis of xonotlite and xonotlite-aerogel compos-
ite insulation materials.

Heat transfer models in porous insulation materials must describe
heat transfer mechanisms such as solid conduction, gas conduction, and
radiation through participating media. Natural convection can always be
neglected if the pores in the material are small (< 4 mm) [6]. In the past,
many studies have resulted in various theoretical models to estimate the
effective thermal conductivity of porous media with different geometri-
cal structures, such as Russell, Eucken and Loeb models [7] based on
cylindrical or spherical pore structures. Zehnder and Schlunder [8] pro-
posed a correlation for the stagnant thermal conductivity based on a one-
dimensional heat flow model for heat conduction through a packed bed of
spherical particles. Zimmerman [9] presented a thermal conductivity model
for fluid-saturated rocks by using an effective medium theory. Verma
et al. [10] developed an expression for predicting the effective thermal con-
ductivity with spherical inclusions. Hsu et al. [11] developed a lumped-
parameter model for the effective stagnant thermal conductivity of some
two-dimensional and three-dimensional spatially periodic media. Yu and
Cheng [12] developed a fractal thermal conductivity model for both mono-
and bi-dispersed porous media by assuming that porous media consist
of two parts: some particles contact each other to form tortuous chains,
whereas others do not touch each other. More recently, Ma et al. [13]
have developed a self-similarity model for the effective thermal conductiv-
ity of porous media based on the thermal–electrical analogy technique and
on the statistical self-similarity existing in porous media. As the model of
Ma et al. may be only applicable to the porosity range of about 0.3 to 0.5,
Feng et al. [14] extended the work of Ma et al. to a generalized model to
cover a wide range of porosity of 0.14–0.80. All these models have limited
applicability and none correctly predict the thermal conductivity of xonot-
lite insulation material with a porosity as high as 90%.

In this paper, by analyzing the microstructure of xonotlite, two effec-
tive thermal conductivity models, the point-contact hollow spherical model
and the surface-contact hollow cubic model, are developed for the coupled
conduction in high porosity materials.
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Fig. 1. Simplified microstructures and unit cell model of xonotlite. (a) Hollow spherical
array structures and (b) Unit cell.

2. POINT-CONTACT HOLLOW SPHERICAL MODEL

2.1. Geometrical Structure

Using a scanning electron microscope image of xonotlite, we find that
xonotlite is made up of hollow spherical agglomerates interwoven with
xonotlite fibers with radii from hundreds to thousands of nanometers.
By simplification, xonotlite is considered as a periodical array of hollow
spheres with an inner radius R and shell thickness h, as shown in Fig. 1a.
All of the hollow spheres are in point contact.

Since the shell consists of xonotlite fibers, there exist pores in it. If the
porosity of the shell is Φi, the total porosity of the unit cell, as shown in
Fig. 1b is

Φ =1− π

6
(1−Φi)

[
1−

(
R

R +h

)3
]

(1)

2.2. Effective Thermal Conductivity

First, radiation heat transfer is not considered. Assume that one-
dimensional heat transfer occurs along the opposite z axis. Based on the
symmetry of the structure, the unit cell can be divided into two parts: one
is the coherent fluid at the center part, and the other is a quarter of col-
umn with a radius (R + h), which also includes two parts, as shown in
Fig. 2. The effective thermal conductivity of the unit cell is
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Fig. 2. Heat transfer analysis in the
unit cell.

ke =
(

1− π

4

)
kf + π

4
ksf (2)

where kf is the thermal conductivity of the fluid and ksf is the effective
thermal conductivity of a quarter of a column. As shown in Fig. 2, T1 and
T2 are the temperatures of the top and bottom surfaces, respectively. Heat
conduction in the structure consists of two parts: Q1, through a quarter
of a column with radius R, and Q2, through a quarter of a hollow cylin-
der with a thickness h. According to Fourier’s law, the expressions for Q1
and Q2 are

Q1 = (T1 −T2)kf

4

∫ R

0

πy dy

(R +h)−β(
√

(R +h)2 −y2 −
√

R2 −y2)
(3)

Q2 = (T1 −T2)kf

4

∫ R+h

R

πy dy

R +h−β
√

(R +h)2 −y2
(4)

Here, β = 1 − kf /kc, where kc is the thermal conductivity of the shell and
kf is the thermal conductivity of the fluid. Integrating Eq. (3) and (4), have
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The effective thermal conductivity ksf is given by

ksf = 2(R +h)(Q1 +Q2)

1
4 π(R +h)2∆T

= 8(Q1 +Q2)

π(R +h)∆T
(7)

Substituting Eqs. (5) and (6) into Eq. (7) and considering Eq. (1), we get

ksf = kf
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Here,

A= 3
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π
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Substituting Eq. (8) into Eq. (2), we have
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This is the effective thermal conductivity expression based on the
point-contact hollow spherical model without radiation. Obviously, this
effective thermal conductivity is dependent on the thermal conductivity of
the solid, the thermal conductivity of the fluid, and the microstructure of
the xonotlite as well as the porosity of the shell.
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3. SURFACE-CONTACT HOLLOW CUBIC MODEL

3.1. Geometrical Structure

Actually, spherical agglomerates in xonotlite are not in perfect point
contact, and there exists some contact area between them. We can con-
sider xonotlite as an array of hollow cubic structures with a side length a,
and a wall thickness h. Hollow cubic structures are in contact through a
section c× c as shown in Fig. 3a.

The following dimensionless parameters can be defined similarly in
the literature [11]:

γa =a/l, γb =2h/a, γc = c/a (11)

The porosity of the unit cell is as follows:

Φ =1− (1−Φi)[(1− (1−γb)3 −3γ 2
c )γ 3

a +3γ 2
a γ 2

c ] (12)

3.2. Effective Thermal Conductivity

The one-dimensional heat conduction, as shown in Fig. 3b, is consid-
ered. As discussed above, conduction in a unit cell consists of four parts
(see Fig. 4): (I) transferred through rectangular shape (l − a)/2 × l/2 ×
l/2, (II) through rectangular shape h× l/2× l/2; (III) through rectangular
shape (a −2h− c)/2× l/2× l/2, and (IV) through rectangular shape c/2×
l/2× l/2. Therfore, the effective thermal conductivity of the unit cell is

a/2 

h 

c/2 

Heat flow direction 
l/2 

c 
a 

l

Surface-contact hollow cubic structure Unit cell 
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Fig. 3. Surface-contact hollow cubic structure and unit cell model of xonotlite.
(a) Surface-contact hollow cubic structure and (b) Unit cell.
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Fig. 4. Unit cell in plane view.

ke = (1−γa)ksf1 +γaγbksf2 +γa(1−γb −γc)ksf3 +γaγcksf4 (13)

where ksf1, ksf2, ksf3, and ksf4 are the effective thermal conductivities corre-
sponding to parts (I), (II), (III), and (IV), respectively. The corresponding
expressions for ksf1, ksf2, ksf3, and ksf4 are

ksf1 = γaγckf kc

(1−γaγc)kc +kf γaγc
+ (1−γaγc)kf (14)

ksf2 = γakf kc

(1−γa)kc +kf γa
+ (1−γa)kf (15)

ksf3 = γa(1−γb)kf kc

(1−γaγb)kc +kf γaγb
+ γaγbkf kc

(1−γa)kc +kf γa
+ (1−γa)kf (16)

ksf4 = γa(1−γb −γc)kf kc

(1−γaγb)kc +kf γaγb
+ γaγbkf kc

(1−γa)kc +kf γa
+ (1−γa)kf kc

(1−γaγc)kc +kf γaγc

+ γaγckf kc

(1−γa +γaγb)kf +kcγa(1−γb)
(17)
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where kf and kc are the thermal conductivities of the fluid and shell,
respectively. Substituting Eqs. (14) to (17) into Eq. (13), we have

ke
kf

= (2−γb)γ 2
a γb

1− (1−β)γa
+ γ 2

a [(1−γb)2 −γ 2
c ]

1− (1−β)γaγb
+ 2γaγc(1−γa)

1− (1−β)γaγc

+ γ 2
a γ 2

c

β + (1−β)(1−γb)γa
+ (1−γa)(1+γa −2γaγc)

(18)

This is the effective thermal conductivity expression based on the sur-
face-contact hollow cubic model without radiation. Obviously, this effec-
tive thermal conductivity is also dependent on the thermal conductivity of
the solid, the thermal conductivity of the fluid, and the microstructure of
the xonotlite as well as the porosity of the shell.

4. TERM FOR RADIATION HEAT TRANSFER

Radiation heat transfer is another important heat transfer mecha-
nism in porous insulation materials. At high temperatures thermal radia-
tion can be very large and cannot be neglected. In practical applications,
the optical thickness of insulators is typically very large. For an optically
thick medium, radiation travels only a short distance. The local intensity
is the result of radiation from nearby locations only. The energy transfer
depends only on the conditions in the intermediate vicinity of the position
being considered. For the two models of this study, the thermal radiation
formula from the Loeb model is adopted, in which radiation heat trans-
fer in the unit cell is divided into two parts: thermal radiation occurring
inside the hollow spherical shell and outside the hollow spherical shell.
They are both added into the part of the thermal conductivity of the fluid
in the unit cell. The thermal radiation formula is [15]

kr =4GdεσT 3 (19)

Here, G is the shape factor of a pore (for a spherical pore, G= 2/3, and
for a rectangular pore, G= 1), d is the maximum dimension of a pore in
the heat flow direction, ε is the emissivity of the radiation surface, σ is the
Stefan–Boltzmann constant, and T is the average absolute temperature of
a pore.

5. EFFECTIVE THERMAL CONDUCTIVITY OF THE SHELL kc

The shell of xonotlite secondary particles is formed by interwoven
xonotlite fibers. Some pores also exist in the shell. Here, we adopt the par-
allel model [12] to estimate the effective thermal conductivity of the shell,
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kc, which is

kc =Φikf + (1−Φi)ks (20)

where ks is the thermal conductivity of the xonotlite fibers and Φi is the
porosity of the shell.

6. RESULTS AND DISCUSSION

Figure 5 shows comparisons of experimental data [2, 3, 16] with the
best fits of the point-contact hollow spherical model and the surface-con-
tact hollow cubic model (γa = 0.78 and γc = 0.1). In the calculations, the
thermal conductivity of air is kf =0.026 W·m−1·K−1, and the thermal con-
ductivity of the xonotlite fibers ks =1.8 W·m−1·K−1. According to the lit-
erature [3], the thickness of the shell h = 4µ m and the porosity of the
shell Φi =0.8 are adopted for the two unit cell structures. It is shown that
the results based on the surface-contact hollow cubic model agree with
experimental data better than the point-contact hollow spherical model,
although the differences between the two models and between the models
and experimental data are within 10%. The results based on the point-con-
tact hollow spherical model are a little lower than those based on the sur-
face-contact hollow cubic model. This difference may be explained by the
fact that hollow spherical agglomerates are not in perfect point contact,
i.e., there is some surface contact between them. The surface-contact hol-
low cubic structure is likely a more reasonable representation of the real
microstructure of xonotlite, and the model based on this kind of structure
can be used to more accurately estimate the thermal conductivity.

As mentioned above, radiation heat transfer is another important heat
transfer mechanism in porous insulation materials. Figure 6 shows the
effect of temperature on the effective thermal conductivity of xonotlite
based on the two models. It is shown that some differences exist between
the two models and the linear relationship mentioned in the literature [16].
It is considered that the results of our models are more reasonable because
the cubic relationship exists between the radiative thermal conductivity
and temperature, kr ∼T 3.

7. CONCLUDING REMARKS

The concept of a unit cell model for a periodic medium has been
widely used in other physical problems, such as electrical conductivity,
micromechanics, permeability, etc. Some effective thermal conductivity
models based on the unit cell structure have also been developed previously
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Fig. 5. Comparison of effective thermal conductivity of models with experimental
data.

Fig. 6. Effect of temperature on the effective thermal conductivity of xonotlite.
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for porous media [8–11, 17]. However, those models cannot be used to calcu-
late the effective thermal conductivity of xonotlite-type micro-pore calcium
silicate directly because of its high porosity (> 90%) and peculiar structure
features (hollow spherical agglomerates). Based on the microstructure fea-
tures of xonotlite, two unit cell models, the point-contact hollow spherical
model and the surface-contact hollow cubic model, have been developed.
Expressions for the effective thermal conductivity have been derived. It is
shown that the differences between the two models and experimental data
in the literature are within 10%, and that the effective thermal conductivity
based on the surface-contact cubic model agrees better with experimental
data.
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